skip to main content


Search for: All records

Creators/Authors contains: "Law, Chris J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Body size is often hypothesized to facilitate or constrain morphological diversity in the cranial, appendicular, and axial skeletons. However, how overall body shape scales with body size ( i.e. , body shape allometry) and whether these scaling patterns differ between ecological groups remains poorly investigated. Here, we test whether and how the relationships between body shape, body size, and limb lengths differ among species with different locomotor specializations, and describe the underlying morphological components that contribute to body shape evolution among squirrel (Sciuridae) ecotypes. We quantified the body size and shape of 87 squirrel species from osteological specimens held at museum collections. Using phylogenetic comparative methods, we first found that body shape and its underlying morphological components scale allometrically with body size, but these allometric patterns differ among squirrel ecotypes: chipmunks and gliding squirrels exhibited more elongate bodies with increasing body sizes whereas ground squirrels exhibited more robust bodies with increasing body size. Second, we found that only ground squirrels exhibit a relationship between forelimb length and body shape, where more elongate species exhibit relatively shorter forelimbs. Third, we found that the relative length of the ribs and elongation or shortening of the thoracic region contributes the most to body shape evolution across squirrels. Overall, our work contributes to the growing understanding of mammalian body shape evolution and how it is influenced by body size and locomotor ecology, in this case from robust subterranean to gracile gliding squirrels. 
    more » « less
  2. Esselstyn, Jacob (Ed.)
    Abstract Although convergence is often recognized as a ubiquitous feature across the Tree of Life, whether the underlying traits also exhibit similar evolutionary pathways towards convergent forms puzzles biologists. In carnivoran mammals, “elongate,” “slender,” and “long” are often used to describe and even to categorize mustelids (martens, polecats, and weasels), herpestids (mongooses), viverrids (civets and genets), and other carnivorans together. But just how similar these carnivorans are and whether there is convergence in the morphological component that contribute to elongation has never been assessed. Here, I found that these qualitatively described elongate carnivorans exhibited incomplete convergence towards elongate bodies compared to other terrestrial carnivorans. In contrast, the morphological components underlying body shape variation do not exhibit convergence despite evidence that these components are more elongate in elongate carnivorans compared to nonelongate carnivorans. Furthermore, these components also exhibited shorter but different phylogenetic half-lives towards more elongate adaptive peaks, indicating that different selective pressures can create multiple pathways to elongation. Incorporating the fossil record will facilitate further investigation of whether body elongation evolved adaptively or if it is simply a retained ancestral trait.[Axial skeleton; body elongation; convergent evolution; macroevolution; phylogenetic comparative methods; thoracolumbar vertebrae.] 
    more » « less
  3. Abstract

    The carnivoran cranium undergoes tremendous growth in size and development of shape to process prey as adults and, importantly, these ontogenetic processes can also differ between the sexes. How these ontogenetic changes in morphology actually relate to the underlying jaw musculature and overall bite performance has rarely been investigated. In this study, I examined sex‐specific ontogenetic changes in cranial morphology, jaw adductor muscles, and theoretical bite force between subadults and adults in the fisher (Pekania pennanti) and American marten (Martes americana). I found evidence that cranial size alone does not completely explain ontogenetic increases in bite forces as found in other mammalian species. Instead, cranial shape development also drives ontogenetic increases in relative bite force by broadening the zygomatic arches and enlargement of the sagittal crest, both of which enable relatively larger jaw adductor muscles to attach. In contrast, examination of sexual dimorphism within each age‐class revealed that cranial shape dimorphism did not translate to dimorphism in either size‐corrected bite forces or size‐corrected physiological cross‐sectional area of the jaw adductor muscles. These results reveal that morphological size and shape variation can have different influences on bite performance depending on the level of intraspecific variation that is examined (i.e. ontogenetic versus sexual dimorphism).

     
    more » « less
  4. null (Ed.)
  5. Abstract

    Bite force is a measure of feeding performance used to elucidate links between animal morphology, ecology, and fitness. Obtaining live individuals for in vivo bite‐force measurements or freshly deceased specimens for bite force modeling is challenging for many species. Thomason's dry skull method for mammals relies solely on osteological specimens and, therefore, presents an advantageous approach that enables researchers to estimate and compare bite forces across extant and even extinct species. However, how accurately the dry skull method estimates physiological cross‐sectional area (PCSA) of the jaw adductor muscles and theoretical bite force has rarely been tested. Here, we use an ontogenetic series of southern sea otters (Enhydra lutris nereis) to test the hypothesis that skeletomuscular traits estimated from the dry skull method accurately predicts test traits derived from dissection‐based biomechanical modeling. Although variables from these two methods exhibited strong positive relationships across ontogeny, we found that the dry skull method overestimates PCSA of the masseter and underestimates PCSA of the temporalis. Jaw adductor in‐levers for both jaw muscles and overall bite force are overestimated. Surprisingly, we reveal that sexual dimorphism in craniomandibular shape affects temporalis PCSA estimations; the dry skull method predicted female temporalis PCSA well but underestimates male temporalis PCSA across ontogeny. These results highlight the importance of accounting for sexual dimorphism and other intraspecific variation when using the dry skull method. Together, we found the dry skull method provides an underestimation of bite force over ontogeny and that the underlying anatomical components driving bite force may be misrepresented.

     
    more » « less